
Multimodal Graph Neural Architecture Search Under Distribution Shifts

Jie Cai 1, Xin Wang 2,3*, Haoyang Li 2, Ziwei Zhang 2, Wenwu Zhu2,3*

1Tsinghua-Berkeley Shenzhen Institute, Tsinghua University
2Department of Computer Science and Technology, Tsinghua University

3Beijing National Research Center for Information Science and Technology, Tsinghua University
caij20@tsinghua.org.cn, {xin wang, zwzhang, wwzhu}@tsinghua.edu.cn, lihy18@mails.tsinghua.edu.cn

Abstract

Multimodal graph neural architecture search (MGNAS) has
shown great success for automatically designing the optimal
multimodal graph neural network (MGNN) architecture by
leveraging multimodal representation, crossmodal informa-
tion and graph structure in one unified framework. However,
existing MGNAS fails to handle distribution shifts that nat-
urally exist in multimodal graph data, since the searched ar-
chitectures inevitably capture spurious statistical correlations
under distribution shifts. To solve this problem, we propose
a novel Out-of-distribution Generalized Multimodal Graph
Neural Architecture Search (OMG-NAS) method which opti-
mizes the MGNN architecture with respect to its performance
on decorrelated OOD data. Specifically, we propose a multi-
modal graph representation decorrelation strategy, which en-
courages the searched MGNN model to output representa-
tions that eliminate spurious correlations through iteratively
optimizing the feature weights and controller. In addition,
we propose a global sample weight estimator that facilitates
the sharing of optimal sample weights learned from exist-
ing architectures. This design promotes the effective estima-
tion of the sample weights for candidate MGNN architectures
to generate decorrelated multimodal graph representations,
concentrating more on the truly predictive relations between
invariant features and ground-truth labels. Extensive experi-
ments on real-world multimodal graph datasets demonstrate
the superiority of our proposed method over SOTA baselines.

1 Introduction
Multimodal graph data is ubiquitous in various real-world
applications such as social media (Li et al. 2019b; Tao et al.
2020; Li et al. 2021a), biomedicine (Wen et al. 2022), and
health (Gao et al. 2021a). Accordingly, the development of a
capable multimodal graph neural architecture search (MG-
NAS) algorithm is of significant importance to effectively
process this complex data type for various tasks and data dis-
tributions. MG-NAS aims at automatically designing mul-
timodal graph neural networks (MGNN) and getting more
powerful models, which achieves great success in various
multimodal graph tasks (Cai et al. 2022) under the iden-
tically distributed (ID) assumption, where the training and

*Corresponding authors
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

testing multimodal graphs are sampled from the same dis-
tribution. Different MGNN architectures have been proven
to have different performances on different tasks and data
distributions because of the diverse message-passing mech-
anisms (Li et al. 2022b) and crossmodal interaction modes.

However, distribution shifts in multimodal graph data -
which indicate changes in the statistical properties of data
across domains or over time, are very common in real-world
applications. Distribution shifts can arise from various fac-
tors, such as modifications in real-world conditions, varia-
tions in data collection processes, or the presence of con-
founding variables. Especially in the case of multimodal
graph data, where each graph or node is characterized by
multiple modalities, may be impacted by distinct factors.
Furthermore, these factors always interact with each other in
intricate and complex ways. Furthermore, distribution shifts
in multimodal graph data occur not only in single-modal or
multimodal interactions within a node but also in the overall
distribution of the graph. As shown in Figure 1, the distribu-
tion of multimodal reviews on Amazon varies across differ-
ent commodity categories, such as dress, trousers and shoes.

Existing MGNAS or NAS approaches are based on the ID
assumption. When there is a distribution shift, each MGNN
is trained on the training dataset and evaluated on the val-
idation dataset. The best-performing model on the valida-
tion dataset is then selected for the new data distribution.
However, it is important to note that the selected MGNN is
more prone to overfitting the training distribution, resulting
in the over-exploitation of spurious features and disregard
of invariant features. Consequently, the best MGNN archi-
tecture derived by MGNAS may be sub-optimal in out-of-
distribution (OOD) scenarios due to the mistakenly learned
features and the inadequate evaluation strategy.

The problem of distribution shifts can be particularly
challenging, and developing effective methods to handle dis-
tribution shifts in multimodal graph data is an essential re-
search topic. The first challenge in addressing the OOD gen-
eralization problem of MGNAS is how to model the distribu-
tion shifts across graph structures, modalities, and their com-
plex interactions. Given the complex nature of feature inter-
actions in multimodal graphs, distinguishing between invari-
ant and variant features can pose significant challenges. The
second challenge lies in automating the search for the best
model in multimodal graph OOD situations. It will be ben-

Blue Dress

Red Dress

Black Dress

(b) Distribution Shift on Singlemodal Domain (Color Shift)

(a) Distribution Shift on Multimodal Domain

Dress Trousers Baby Shoes

Red Dress Black Dress Blue Dress

Train Test

Train Test

Figure 1: Distribution shifts in the Amazon dataset. Different node colors represent different node distributions and variations
in graph density correspond to different graph structure distributions. In Figure (a), the MGNNs are trained on Dress, Trousers
and Baby but tested on Shoes, leading to distribution shifts in both multimodal node features and graph structures. In Figure (b),
the MGNNs are trained with red and black dresses but tested with blue dresses with a single-modal distribution shift.

eficial if we leverage the diverse characteristics of searched
models to enhance the OOD generalization capabilities. It
is also important to minimize the inconsistent performance
between the validation and the training dataset.

As an effort towards enhancing the generalization capa-
bility of MG-NAS, we propose a method named Out-of-
distribution Generalized Multimodal Graph Neural Archi-
tecture Search (OMG-NAS) that searches for architectures
with both maximal predictive performance and maximal
generalization ability. The overview of the proposed OMG-
NAS is illustrated in Figure 2. Firstly, to address the different
distribution shift patterns of different modalities and their
complex interactions at their core, we disentangle the multi-
modal features into singalmodal contributions. Notably, we
observe that without this disentanglement, the performances
of MGNNs are significantly compromised. Secondly, we
employ sample reweighting and random Fourier features
(RFF) to decorrelate multimodal graph features and allevi-
ate the impact of intricate non-linear dependencies during
the learning process. The global multimodal sample weight
estimator (GMSWE), the sampled MGNN model, and the
controller are optimized iteratively in an end-to-end man-
ner. Finally, to fully leverage the diverse models exploited
by OMG-NAS, we train and maintain the global weights
across different architectures. The global weights are model
agnostic and allow for efficient warm-starting of new archi-
tectures, leading to a more stable searching process.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to formu-

late the problem of OOD graph neural architecture search
from multiple modalities. We introduce three novel mul-
timodal graph-OOD datasets to evaluate the generaliza-
tion ability of the proposed method.

• We propose an OMG-NAS method that automatically
searches for the best MGNN model with the best OOD
generalization ability by using a novel GMSWE mod-
ule to optimize the global weights that decorrelate multi-

modal invariant and variant features.
• We construct extensive experiments that demonstrate the

superiority of OMG-NAS over previous SOTA methods
in both graph classification and node classification tasks..

2 Related Works
Multimodal Graph Learning. Given the success of graph
learning in information aggregation and transmission (Li
et al. 2019b), some scholars focus on multimodal graph
learning to effectively utilize the dependencies and rela-
tionships across multiple modalities in information dissem-
ination. Multimodal graph neural network (MGNN) aims
to represent multimodal graph-structured data in an end-
to-end manner (Peng et al. 2017; Wu et al. 2020), tak-
ing into account both multimodal information aggregation
and message passing. MGNNs also provide an expressive
and flexible strategy to leverage interdependencies in mul-
timodal datasets (Gao et al. 2020a). Although these multi-
modal graph learning methods have made great success, it is
worth noting that they are designed for ID conditions. That
is, they can not be directly applicable in OOD scenarios due
to the lack of generalization ability.

Out-of-Distribution Generalization. In real-world sce-
narios, the distribution of training graphs may differ from
that of testing graphs, leading to unstable inference across
different testing environments (Zhu et al. 2021; Ding et al.
2021). To tackle the OOD problem on graphs, researchers
have proposed various methods including disentanglement-
based graph models (Fan et al. 2022; Li et al. 2022c, 2021b),
causality-based graph models (Li et al. 2022a; Chen et al.
2022) and graph invariant learning (Li et al. 2023, 2022d;
Wu et al. 2022a). Sample reweighting is an effective tool for
addressing distribution shift problems. (Shen et al. 2020) in-
troduce an online reweighting method that utilizes a set of
unbiased clean validation examples for sample reweighting.
Similarly, (Fang et al. 2020) propose to automatically learn

Dress
Trousers

Shoes

Di
st

rib
ut

io
n

sh
ift

Baby

Data Preprocessing

Arch Controller 𝜃
Sampling

Searching Process

𝑅𝑒𝑝𝑟𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛!

𝑅𝑒𝑝𝑟𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛"

Weight 𝜔#

Weight 𝜔$

Prediction Loss

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛!

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛"

Multimodal Gradient Balancing

𝐺𝑁𝑁	𝑐𝑒𝑙𝑙𝑠

Textual
Graph

Visual
Graph

Multimodal Graph Feature Decorrelation

Final Loss

Textual Visual

Baby

Dress
Trousers

Baby

Dress
Trousers

Multimodal Graph Reweighting
Optimal weights 𝜔

…

Reward

Multimodal Fusion Classifier

!

"

#

"

$

% Multimodal Global
Sample Weight Estimator

Figure 2: Overview of the OMG-NAS method. After ① data preprocessing, we ② sample an MGNN architecture using the
controller, then we ③ optimize the MGNN model with Multimodal Graph Feature Decorrelation (MGFD) and ④ get the optimal
global multimodal sample weights using Global Multimodal Sample Weight Estimator across Architectures (GMSWE). The
performance of the optimized MGNN acts as the ⑤ reward to guide the training of the controller in the next optimization cycle.

an explicit loss-weight function that is parameterized by an
MLP.

Graph Neural Architecture Search. Graph neural archi-
tecture search (GraphNAS) intends to automatically search
for the most effective model architecture without human in-
tervention (Qin et al. 2022b; Zhang et al. 2022b, 2023). Ex-
isting GraphNAS methods can be categorized into reinforce-
ment learning-based methods (Gao et al. 2021b; Zhou et al.
2022), evolutionary algorithms (Nunes and Pappa 2020;
Shi et al. 2022), and differentiable methods (Zhao et al.
2020a,b). In recent years, scholars also explore how NAS
performs under distribution shifts (Bai et al. 2021; Qin et al.
2022a). However, there are still significant challenges when
dealing with multimodal graph data. An aspect worthy of
attention is that NAS methods naturally generate a diverse
set of models that have proven effective for OOD settings
(Pagliardini et al. 2022; Teney et al. 2022; Rame et al. 2022).

3 Methodology
3.1 Preliminaries
Notations Consider a multimodal graph represented as
G = (U , E), where U = {u1, · · · , uN} is the vertex set
with size N and E = {⟨ui, uj⟩|1 ≤ i, j ≤ N} is the
edge set with |E| edges. Each node ui ∈ U , ui corresponds
to multimodal node feature Xi = [Xt

i , X
v
i] including the

textual feature Xt
i and the visual feature Xv

i . For textual
modality, each node can represent either words, sentences,
or paragraphs, while for visual modality, each node can rep-
resent either a part of a picture or a whole picture. For the
node classification task, the dataset contains graphs with N
nodes U = {(ui, yi)|i = 1, · · · , N} where yi is the la-
bel of node ui. For the graph classification task, the dataset
contains a set of graphs D = {(Gj , yj)|j = 1, · · · ,M}
where yj is the label of graph Gj . This paper focuses on the
node classification task and graph classification task. How-
ever, our method can also be easily extended to other multi-

modal graph learning tasks. MG-NAS aims to find the best
architecture A∗ ∈ A that maximizes the prediction accuracy
given the pre-defined search space A.

OOD problem of MG-NAS Given a training multi-
modal graph G from the distribution Ptr(G, Y), MG-NAS
needs to handle the testing multimodal graph G from a new
distribution Pte(G, Y), where Ptr(G, Y) ̸= Pte(G, Y) and
Pte(G, Y) is unknown during the training process. In this
scenario, MG-NAS faces the issue of over-fitting the train-
ing data, leading to sub-optimal MGNN architectures.

The goal of this paper is to address the issue of overfitting
in the training data and leverage the diverse models gener-
ated by MG-NAS to develop a re-weighting approach that
effectively decorrelates the multimodal graph information
acquired from the training set. Given an input multimodal
graph G for the node classification task (or a set of multi-
modal graphs {G} for the graph classification task), we aim
to optimize the following objective:
(A∗,W ∗, ω∗)= argmin

(A,W,ω)∈(A,W,Ω)

Ltrain(fcls(ΦA,W (G;ω))), (1)

where A∗,W ∗ are the best MGNN architecture and op-
timal trainable model parameters, respectively. ω∗ is the
best sample weight for multimodal graph feature decor-
relation, ΦA,W (G;ω) denotes the MGNN encoder under
weights ω, fcls represents the classifier, Ltrain represents
the loss function. We use two GNN encoders ϕt(θt, ·) and
ϕv(θv, ·) to extract textual and visual features. We denote
Zt
n = ϕt(θt, ut

n) = [Zt
n1, · · · , Zt

nmt
] ∈ RN×mt , Zv

n =

ϕv(θv, uv
n) = [Zv

n1, · · · , Zv
nmv

] ∈ RN×mv as the uni-modal
representations of node un.

3.2 Multimodal Graph Feature Decorrelation
We aim to identify the optimal weights of training sam-
ples to eliminate the dependency between features and re-
move the reliance on spurious features in the multimodal
graph representation space. However, simply weighting each

sample will fail to achieve OOD generalization in the mul-
timodal graph OOD settings. To tackle this problem, we
propose a multimodal graph feature decorrelation (MGFD)
method. MGFD separates the features into unimodal compo-
nents and multimodal interactions, then utilizes the approx-
imation prediction generated by the unimodal sub-networks
to decorrelate features within each modality.

We first introduce how to obtain textual intra-modal
weights ωt and the process is similar for visual intra-modal
weights ωv . We eliminate dependence between sub-features
in the single-modality representation space by measuring
their relevance based on the sample data. We adopt the
squared Frobenius norm of the partial cross-covariance ma-
trix ∥Σ̂Zt

∗i,Z
t
∗j
∥2F as a way of quantifying the degree of inde-

pendence, inspired by (Zhang et al. 2021; Li et al. 2022a):

Σ̂Zt
∗i,Z

t
∗j
=

1

N−1

N∑
n=1

[(h(Zt
ni)−h(Zt

∗i))
⊤·(g(Zt

nj)−g(Zt
∗j))], (2)

where Zt
ni and Zt

nj denote the value of textual ran-
dom variables Zt

∗i and Zt
∗j given the input node un,

N is the number of training samples. h(·) and g(·)
are random Fourier features (RFF) mapping functions
and we select Q functions from the RFF function space
HRFF . h(Zt

∗i) and g(Zt
∗j) are the mean values of vec-

tors h(Zt
∗i) = [h(Zt

1i), · · · , h(Zt
Ni)]

⊤ and g(Zt
∗j) =

[g(Zt
1j), · · · , g(Zt

Nj)]
⊤.

Given textual intra-modal weights, the re-weighted partial
cross-covariance matrix can be calculated as

Σ̂ωt

Zt
∗i,Z

t
∗j
=

1

N−1

N∑
n=1

[(ωt
nh(Z

t
ni)−hωt(Zt

∗i))
⊤·(ωt

ng(Z
t
nj)−gωt(Z

t
∗j))],

(3)

where hωt(Zt
∗i) and gωt(Zt

∗j) are weighted average of vec-
tors h(Zt

∗i) and g(Zt
∗j) with weights ωt=[ωt

1, · · · , ωt
N]⊤.

To eliminate the dependence between representations, we
optimize ωt by minimizing the squared Frobenius norm of
the partial cross-covariance matrix:

ωt∗ = argmin
ωt∈∆

∑
1≤i<j≤mt

Z

∥Σ̂ωt

Zt
∗i,Z

t
∗j
∥2F , (4)

where ∆ = {ωt ∈ RN
+ |

∑N
n=1 ω

t
n = N}, mt

Z is the dimen-
sion of Zt.

Afterwards, we iteratively optimize the multimodal fea-
ture weights ω = [ωt, ωv], MGNN encoder Φ =
{ϕt, ϕv, ϕf} and classifier fcls by minimizing the following
MGFD loss function Lw:

Lw=
N∑

n=1

ωt
nL(fcls(ϕ

t(xt
n), yn))+ωv

nL(fcls(ϕ
v(xv

n), yn)), (5)

where L denotes the cross-entropy loss, ωt, ωv are the tex-
tual and visual intra-modal weights with length of N , in-
dicating the importance of unimodal training features. The
overall loss function consists of two terms: the first term rep-
resents the cross-entropy loss function and the second term
represents the MGFD loss:

Ltrain=−
1

N

N∑
n=0

(yn log ŷn−(1−yn) log(1−ŷn))+Lw. (6)

When one of the modalities is more susceptible to be in-
fluenced by spurious features, MGNN tends to learn the spu-
rious feature of this modality over the other modality. To
fully learn from the two GNN encoders of MGNN, we also
incorporate the OGM-GE method (Peng et al. 2022) as a
plug-in module to prevent over-reliance on the spurious fea-
tures of a single modality.

3.3 Global Multimodal Sample Weight Estimator
across Architectures

In Equation 4, our objective is to learn unique weights
for each sample’s unimodal contribution. However, differ-
ent MGNN models offer diverse multimodal graph feature
spaces for learning these feature weights. To address this
issue, we propose a novel approach called the global mul-
timodal sample weight estimator (GMSWE). During the
training of the OMG-NAS controller, we employ a saving-
reloading-finetuning method.

We have observed that the learned weights have limited
dependence on the sampled model architectures in the ar-
chitecture search phase because they are associated with
the distribution of input multimodal graph features. Conse-
quently, these learned weights can be effectively transferred
and generalized across architectures. Our findings yield two
important insights: Firstly, the optimal weights learned from
one MGNN architecture can be used as a less biased multi-
modal graph feature reweighting scheme for another archi-
tecture. Secondly, we notice that the learning speed of the
optimal weight varies across different MGNN architectures,
with some models struggling to effectively learn decorre-
lated features. Based on these insights, we recommend the
adoption of a global weight across different model architec-
tures. Specifically, after the training of an MGNN architec-
ture, we retain the best global weight and use it as a warm
start for the next MGNN architecture training process. For
the i-th sampled architecture, the formula is shown below:

(A(i),W (i), ω(i)) = argmin
A,W,ω

Ltrain|ω∗,

ω∗ = ω(i),L∗
val = L

(i)
val, if L(i)

val < L
∗
val

, (7)

where A(i), W (i) and ω(i) represent the best architecture,
optimized model parameters and sample weights at the i-th
step, L(i)

val refers to the best validation loss at the i-th step,
ω∗ and L∗

val represent the best global sample weights and
the best global validation loss prior to the i-th step.

3.4 Search Algorithm
In this work, we employ a reinforcement learning-based
search algorithm, which is a widely adopted strategy in
many popular NAS algorithms. We utilize a recurrent neural
network (RNN) as the controller to generate MGNN archi-
tectures. Once an architecture is generated, we construct and
train an MGNN model based on this architecture and record
its highest accuracy on the validation dataset. Subsequently,
we optimize the parameters of the RNN controller, enabling
it to generate better architectures over time.

Train the controller. Let P (A; θ) denote the distribu-
tion of architecture A parameterized by the choice of con-

troller θ, the goal is to maximize the expected accuracy
EP (A;θ)[R(A(W ∗, G))], while minimizing the training loss
Ltrain(A(W,G)). This process can be formulated as a
three-level optimization problem outlined below:

max
A∈A
E [Rval(A(W ∗, G);ω∗)],

s.t. W ∗ = argmin
W
Ltrain(A(W,G);ω∗),

ω∗
t = argmin

ωt

∑
1≤i<j≤mt

Z

∥Σ̂ωt

Zt
∗i,Z

t
∗j
∥2F ,

ω∗
v = argmin

ωv

∑
1≤i<j≤mv

Z

∥Σ̂ωv

Zv
∗i,Z

v
∗j
∥2F ,

(8)

where A represents the search space of the neural architec-
tures, W ∗ represents the optimal trainable parameters for
architecture A. Rval measures the performance (e.g., accu-
racy) of architecture A on the validation dataset, which is
used as the reward in reinforcement learning.

4 Experiment
In this section, we perform various experiments to verify the
effectiveness of the proposed OMG-NAS method.

4.1 Datasets
We evaluate our OMG-NAS on three challenging real-world
multimodal graph OOD datasets: Tencent dataset, Ama-
zon review dataset and Recipe dataset. More details about
datasets are provided in Appendix.

Tencent dataset: We extract the articles spreading net-
work from Tencent WeChat official accounts, where each
node represents an article and has two modalities: visual
head images and textual titles. We establish connections be-
tween two articles if at least one user has viewed both of
them. The objective of this task is to identify and detect low-
quality articles for different network domains.

Amazon review dataset: We extract both user-generated
reviews and product images from the famous Amazon e-
commerce platform1. We classify ratings equal to or greater
than 4 as positive feedback and ratings less than 2 as negative
feedback. Each review in the graph has two modalities and is
connected to other reviews based on whether they belong to
the same or similar products. The task is to categorize each
review as either positive or negative.

For Tencent dataset and Amazon dataset, we use the open-
source implementations (Wolf et al. 2020) of pre-trained
Bert (Devlin et al. 2018) to extract the textual features and
pre-trained Vision Transformer (ViT) (Dosovitskiy et al.
2020) to extract the visual features.

Recipe dataset: We collect recipes data from 3 popular
cooking websites234 with relevant text and images. The ex-
tracted text includes titles, lists of ingredients, and cook-
ing instructions, while the images showcase raw materials,
manufacturing processes, and finished products. We parti-
tion each image into 16*16 small blocks as visual nodes

1https://www.Amazon.com
2https://www.simplyrecipes.com/
3https://www.allrecipes.com/
4https://www.thespruceeats.com/

and divide the text into words as textual nodes (Huang et al.
2019; Han et al. 2022). We aim to classify each recipe into
the corresponding food label such as cakes and beverages.

4.2 Experimental Settings
Evaluation Tasks and Metrics. We consider Tencent
dataset, Amazon review dataset for node classification task,
and Recipe dataset for graph classification task. The evalua-
tion metric is the classification accuracy of the test datasets.

OOD Settings. For each task, we perform experiments
in both Multi-OOD and Single-OOD settings since the oc-
currence of both Multi-OOD and Single-OOD is common
in the real world. According to existing works that fo-
cus on text-OOD (Yang et al. 2022; Wang et al. 2021a),
image-OOD (Wang et al. 2021b; Zhang et al. 2022a), and
multimodal-OOD scenarios (Sun et al. 2022), we identify
two situations where OOD could potentially occur:

1. Multimodal OOD (Multi-OOD): This term refers to the
scenario where the training dataset and testing dataset
come from different domains, causing distribution shifts
in both modalities. For Amazon review dataset, differ-
ent domains correspond to different types of products.
For Recipe dataset, these domains could be determined
based on the subcategories of food. For instance, one can
train a model using chocolate cakes and evaluate its per-
formance on fruit cakes.

2. Singlemodal OOD (Single-OOD): This term refers to the
situation where one modality of the test data exhibits a
different distribution than that of the training data. For in-
stance, distribution shifts in the visual modality can occur
due to changes in color, background, or shape, whereas in
the textual modality, distribution shifts can be attributed
to variations in words, named entities, or sentiments.

Baselines. We compare our model with baselines from the
following three different categories.

• Manually designed MGNNs: we include the MGNNs
in our search space as baselines, i.e., GCN, GAT and
MGAT (Tao et al. 2020).

• OOD generalization methods for GNNs: we consider
Mixup (Wang et al. 2021c), OOD-GNN (Li et al. 2022a),
EERM (Wu et al. 2022a), DIR (Wu et al. 2022b), and
CIGA (Chen et al. 2022) along with manually designed
MGNNs as baselines.

• Neural Architecture Search: we consider three baselines,
Random Search and GraphNAS(Gao et al. 2019) with a
single-modal search space using similar GNN cells, and
MG-NAS (Cai et al. 2022) with the MGNN search space
designed in this paper.

Implementation Details.
For the Tencent dataset, we set the number of epochs to

200, the learning rate to 0.001, and the dimensions of the
representations and hidden layers to 768 for both the text
modality and visual modality. For the Amazon dataset, we
set the number of epochs to 100, choose the learning rate
from {0.001, 0.005, 0.01}, and set the dimensions of the
representations and hidden layers to 128 for both the text

Methods Tencent Amazon review

Multi-OOD Multi-OOD-S Multi-OOD-B Multi-OOD-D Multi-OOD-T Single-OOD

GCN 55.88±0.96 79.42±7.68 79.79±9.01 55.82±2.01 60.90±1.83 57.87±4.11
GAT 55.89±5.50 78.09±2.79 80.42±3.78 55.60±3.44 56.16±2.08 59.38±2.38

MGAT 59.83±4.60 67.83±9.17 72.71±7.50 48.00±4.06 53.60±7.01 61.35±3.16

Mixup 58.08±1.43 57.82±0.56 75.00±0.42 64.50±0.54 70.55±2.72 76.12±1.31
SRGNN 46.36±0.01 47.21±0.15 59.38±0.83 49.62±2.59 60.35±0.49 68.45±1.29
EERM 53.73±0.42 60.74±0.16 55.54±0.15 56.42±0.10 41.83±0.01 64.93±0.41

OOD-GNN + GCN 61.00±1.25 65.96±8.95 74.82±3.75 58.92±3.15 52.80±9.20 59.02±3.17
OOD-GNN + GAT 56.49±3.26 73.14±5.45 78.51±5.81 56.60±5.57 50.19±7.61 58.13±1.81

OOD-GNN + MGAT 60.06±7.99 66.30±5.17 74.54±6.63 60.26±7.69 56.55±5.28 62.67±2.50

Random Search 60.98±2.53 80.13±5.21 82.61±4.12 60.60±5.82 63.86±4.57 65.52 ±6.91
GraphNAS 62.41±3.35 81.89±5.32 83.47±3.98 61.49±5.34 63.51±4.89 67.10 ±7.59
MG-NAS 64.25±3.45 85.13±4.68 86.75±3.32 64.97±4.97 68.55±4.12 68.22±8.80

OMG-NAS (ours) 66.82±1.35 88.40±2.13 88.47±2.82 68.46±1.27 71.65±1.93 75.56±5.41

Table 1: Classification accuracy (%) on the Tencent dataset and Amazon review dataset. In each column, the boldfaced score
denotes the best result and the underlined score represents the second-best result. ± denotes standard deviation. For Amazon
review dataset, we select one domain as the target domain and the other three domains serve as source domains. We use the first
letter to represent each target domain in a concise way, , where S stands for Shoes, B for Baby, D for Dress, and T for Trousers.

Methods Recipe

Multi-OOD Single-OOD

GCN / Edge 61.60±4.90 73.14±4.19
GAT / Mr 53.15±6.55 69.75±3.08

MGAT / Sage 66.80±1.90 75.00±5.56

Mixup 69.54±2.21 75.39±1.56
DIR 60.14±2.75 73.90±1.57

CIGA 67.82±1.98 74.38±1.42
OOD-GNN + GCN / Edge 61.65±5.05 75.45±1.91

OOD-GNN + GAT / Mr 53.73±3.24 71.57±1.82
OOD-GNN + MGAT / Sage 65.30±1.15 76.02±2.49

Random Search 64.64±5.05 72.41±5.80
GraphNAS 64.91±5.92 72.07±5.43
MG-NAS 68.84±4.52 75.82±4.12

OMG-NAS (ours) 75.70±2.48 76.53±2.73

Table 2: Classification accuracy (%) on Recipe dataset.

modality and visual modalities. For the Recipe dataset, the
number of epochs is set to be 50, the batch size is selected
from {8,16,64}, and the learning rate is chosen from {0.001,
0.005, 0.01}. The dimensions of the representations and hid-
den layers are set to 200 for the text modality and 128 for the
visual modality. The number of epochs for learning weights
in MGFD is set to be 30 for all datasets. We utilize a two-
layer MLP classifier. We report the mean values with stan-
dard deviations from 5 repeated experiments.

4.3 Results Analysis and Comparison
Table 1 and Table 2 display a comparison of our proposed
method OMG-NAS with the baseline methods on three real-
world datasets. The results reveal that OMG-NAS achieves
state-of-the-art performance in both Single-OOD and Multi-
OOD settings. Firstly, due to the limited ability to learn do-
main invariant features, fixed MGNN models demonstrate
relatively poor performance and high instability, as evi-
denced by lower accuracy and higher standard deviation.
Secondly, when utilizing distribution generalization meth-

ods like OOD-GNN, it is important to consider the incon-
sistency between different modality distribution shifts. Fail-
ing to account for the mixed distribution shift of different
modalities may result in worse outcomes as the model be-
comes susceptible to variant features. Furthermore, we con-
duct a comparison between OMG-NAS and various NAS
techniques, namely random search, GraphNAS and MG-
NAS. While these methods are successful in selecting the
optimal architecture on the validation dataset, they often un-
derperform on the test dataset due to the presence of spuri-
ous features. This can lead to suboptimal performance on
the test dataset for the chosen architecture. These results
demonstrate that OMG-NAS enhances the OOD generaliza-
tion ability of MGNN models through automatic exploration
of both architectures and multimodal weights.

We also conduct a comparison of OMG-NAS with base-
line methods under unbalanced settings in Table 3. Three
domains are used as source domains, while the remaining
one is used as the target domain. We select Dress as the
dominant source domain and adjust the ratio of data from
the dominant domain and the other two domains, Trousers
and Shoes. OMG-NAS consistently achieves the best perfor-
mance under all ratios. These findings indicate that the sta-
tistical correlations between relevant and irrelevant features
are strong enough to hinder generalization across domains
when the size of domains is unbalanced. However, OMG-
NAS is able to learn the true connections between features
and labels by eliminating these correlations.

4.4 Ablation Study
We compare OMG-NAS against three variations in Table 4
to investigate the impact of different components of OMG-
NAS, as detailed below:
• MGNN + SFD: We adopt a fixed MGNN that learns

weights for each sample instead of learns weights for dif-
ferent modalities. Specifically, we concatenate the out-
puts of the multimodal GNN encoders and optimize the
sample weights via Equation 3 to Equation 6.

Methods Amazon Review

MD2 MD4 MD6 MD8 MD10

GCN 71.91±5.21 68.48±7.14 65.44±5.10 64.32±4.51 67.54±17.86
GAT 69.84±6.46 53.91±6.41 56.48±4.91 51.59±8.13 52.62±0.93

MGAT 70.21±8.32 58.14±6.98 67.13±9.24 59.15±2.41 76.17±1.85
OOD-GNN + GCN 69.91±5.83 64.48±4.74 68.98±6.87 59.01±3.61 52.13±6.93
OOD-GNN + GAT 60.39±7.90 61.84±5.61 57.91±5.31 62.67±4.63 60.96±6.33

OOD-GNN + MGAT 67.17±5.19 79.93±4.92 68.03±5.92 71.43±5.72 66.50±9.41
Random Search 83.61±4.32 83.58±6.70 76.25±5.19 73.23±6.30 71.79±9.27

GraphNAS 84.91±3.95 84.66±7.71 79.82±5.39 72.64±6.21 77.16±10.87
MG-NAS 86.55±3.06 85.33±2.93 82.17±6.51 86.15±1.97 78.79±9.21

OMG-NAS (ours) 88.93±1.89 87.92±2.91 85.94±2.07 89.04±0.51 83.11±0.82

Table 3: Predictive performance on Amazon-Review dataset (Unbalanced). MD2
indicates that the ratio of Dress, Trousers, and Shoes is 2:1:1 in both the training and
validation data, and other notations with ‘MD’ are similar.

Figure 3: The comparison of the val-
idation/test accuracy between transfer
and non-transfer settings on the Recipe
dataset.

Figure 4: The learned multimodal sample
weights distribution on Recipe dataset.

• MGNN + MGFD: We consider a fixed MGNN model
with the MGFD method by learning intra-modal weights,
as described in Section 3.2.

• OMG-NAS w/o GMSWE: On the basis of OMG-NAS,
we incorporate a NAS method that eliminates the transfer
of sample weights across architectures, as discussed in
Section 3.3.

Methods Tencent Amazon Recipe

GCN 55.88±0.96 60.90±1.83 61.60±4.90
GCN + SFD 61.00±1.25 52.80±9.20 61.65±5.05

GCN + MGFD 55.26±2.24 61.85±3.51 70.63±2.10
GAT 55.89±5.50 56.16±2.08 53.15±6.55

GAT + SFD 56.49±3.26 50.19±7.61 53.73±3.24
GAT + MGFD 62.68±4.45 56.85±8.28 54.98±1.47

MGAT 59.83±4.60 53.60±7.01 66.80±1.90
MGAT + SFD 60.06±7.99 56.55±5.28 65.30±1.15

MGAT + MGFD 65.66±1.41 58.30±4.97 65.93±0.60
OMG-NAS w/o GMSWE 62.54±3.11 63.28±6.53 72.85±3.54

OMG-NAS (ours) 66.82±1.35 71.65±1.93 75.70±2.48

Table 4: Ablation experiments on Multi-OOD dataset.

Architectures WT w/o WT Improvement

GCN→ GCN 65.19±9.31 64.03±9.21 +1.8%
GCN→ GAT 70.55±6.50 65.80±5.93 +7.22%

GCN→MGAT 74.15±3.90 73.82±2.50 +4.40%
GAT→ GCN 54.68±8.13 58.27±4.10 -5.80%
GAT→ GAT 69.25±4.42 58.85±6.51 +17.7%

GAT→MGAT 73.35±7.46 70.13±6.69 +4.60%
MGAT→ GCN 74.68±0.47 72.85±1.25 +2.51%
MGAT→ GAT 69.00±10.9 64.13±9.10 +7.60%

MGAT→MGAT 73.28±4.74 72.38±1.62 +1.25%

Table 5: Weight transfer experiments on Recipe dataset.
WT means with-transfer setting and w/o WT means
without-transfer setting.

Firstly, MGNN+MGFD outperforms MGNN+SFD in all
datasets and MGNN architectures. This result highlights the
effectiveness of the multimodal graph feature decorrelation
component in OMG-NAS, which effectively distinguishes
distribution shifts among different modalities and resolves
the issue of overlapping spurious features between modal-

ities. Secondly, OMG-NAS outperforms OMG-NAS w/o
GMSWE in terms of all datasets, indicating the effectiveness
of our proposed global sample weight estimator across ar-
chitectures. We also demonstrate the effectiveness of weight
transfer in Figure 3 and Table 5. In Figure 3, we compare
the validation accuracy and test accuracy between transfer
and not-transfer settings on Recipe dataset. In the transfer
setting, we use the optimal weights obtained from training
GAT as the initial sample weights of MGAT. In the NOT-
transfer setting, we use random weight initialization for the
sample weights of MGAT. To further investigate the effec-
tiveness of the multimodal graph reweighting, we present
the distribution of learned weights in OMG-NAS on the
Recipe dataset. Figure 4 demonstrates that OMG-NAS suc-
cessfully acquires meaningful weights, while the distribu-
tion of weights are obviously different for different modali-
ties. In summary, OMG-NAS outperforms all the variations
considered in this ablation study, demonstrating the impor-
tance of every components of our approach in achieving su-
perior performance.

5 Conclusion
In this paper, we propose a novel OMG-NAS method to im-
prove the OOD generalization ability of MGNAS. OMG-
NAS disentangles multimodal features and reweights sam-
ples using random Fourier features. Additionally, it utilizes
the diverse features of the searched models. All of these de-
signs aim to eliminate spurious correlations and enable OOD
generalization ability. Extensive experiments show the sig-
nificant contribution of OMG-NAS in addressing the chal-
lenging generalization problem of MGNAS.

6 Acknowledgments
This work was supported by the National Key Research and
Development Program of China No. 2020AAA0106300,
National Natural Science Foundation of China (No.
62250008, 62222209, 62102222), Beijing National Re-
search Center for Information Science and Technology un-
der Grant No. BNR2023RC01003, BNR2023TD03006, and
Beijing Key Lab of Networked Multimedia.

References
Abavisani, M.; Wu, L.; Hu, S.; Tetreault, J.; and Jaimes,
A. 2020. Multimodal categorization of crisis events in so-
cial media. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

Bai, H.; Zhou, F.; Hong, L.; Ye, N.; Chan, S.-H. G.; and
Li, Z. 2021. Nas-ood: Neural architecture search for out-of-
distribution generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.

Cai, J.; Wang, X.; Guan, C.; Tang, Y.; Xu, J.; Zhong, B.; and
Zhu, W. 2022. Multimodal continual graph learning with
neural architecture search. In Proceedings of the ACM Web
Conference 2022.

Chen, Y.; Zhang, Y.; Bian, Y.; Yang, H.; Kaili, M.; Xie, B.;
Liu, T.; Han, B.; and Cheng, J. 2022. Learning causally in-
variant representations for out-of-distribution generalization
on graphs. Advances in Neural Information Processing Sys-
tems.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Ding, M.; Kong, K.; Chen, J.; Kirchenbauer, J.; Goldblum,
M.; Wipf, D.; Huang, F.; and Goldstein, T. 2021. A closer
look at distribution shifts and out-of-distribution generaliza-
tion on graphs.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

Fan, S.; Wang, X.; Mo, Y.; Shi, C.; and Tang, J. 2022. Debi-
asing graph neural networks via learning disentangled causal
substructure. Advances in Neural Information Processing
Systems.

Fang, T.; Lu, N.; Niu, G.; and Sugiyama, M. 2020. Rethink-
ing importance weighting for deep learning under distribu-
tion shift. Advances in neural information processing sys-
tems.

Gao, D.; Li, K.; Wang, R.; Shan, S.; and Chen, X. 2020a.
Multi-Modal Graph Neural Network for Joint Reasoning on
Vision and Scene Text. arXiv:2003.13962.

Gao, J.; Lyu, T.; Xiong, F.; Wang, J.; Ke, W.; and Li, Z.
2021a. Predicting the survival of cancer patients with mul-
timodal graph neural network. IEEE/ACM Transactions on
Computational Biology and Bioinformatics.

Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; and Hu, Y. 2019.
Graphnas: Graph neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1904.09981.

Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; and Hu, Y. 2020b.
Graph Neural Architecture Search. In IJCAI.

Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; and Hu, Y. 2021b.
Graph neural architecture search. In International joint con-
ference on artificial intelligence. International Joint Confer-
ence on Artificial Intelligence.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems.
Han, K.; Wang, Y.; Guo, J.; Tang, Y.; and Wu, E. 2022. Vi-
sion gnn: An image is worth graph of nodes. arXiv preprint
arXiv:2206.00272.
Huang, L.; Ma, D.; Li, S.; Zhang, X.; and Wang, H. 2019.
Text level graph neural network for text classification. arXiv
preprint arXiv:1910.02356.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Li, G.; Muller, M.; Thabet, A.; and Ghanem, B. 2019a.
Deepgcns: Can gcns go as deep as cnns? In Proceedings of
the IEEE/CVF international conference on computer vision.
Li, H.; Cui, P.; Zang, C.; Zhang, T.; Zhu, W.; and Lin, Y.
2019b. Fates of microscopic social ecosystems: Keep alive
or dead? In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining.
Li, H.; Wang, X.; Zhang, Z.; Ma, J.; Cui, P.; and Zhu, W.
2021a. Intention-aware sequential recommendation with
structured intent transition. IEEE Transactions on Knowl-
edge and Data Engineering.
Li, H.; Wang, X.; Zhang, Z.; Yuan, Z.; Li, H.; and Zhu, W.
2021b. Disentangled contrastive learning on graphs. Ad-
vances in Neural Information Processing Systems.
Li, H.; Wang, X.; Zhang, Z.; and Zhu, W. 2022a. Ood-gnn:
Out-of-distribution generalized graph neural network. IEEE
Transactions on Knowledge and Data Engineering.
Li, H.; Wang, X.; Zhang, Z.; and Zhu, W. 2022b. Out-
of-distribution generalization on graphs: A survey. arXiv
preprint arXiv:2202.07987.
Li, H.; Zhang, Z.; Wang, X.; and Zhu, W. 2022c. Disentan-
gled graph contrastive learning with independence promo-
tion. IEEE Transactions on Knowledge and Data Engineer-
ing.
Li, H.; Zhang, Z.; Wang, X.; and Zhu, W. 2022d. Learning
invariant graph representations for out-of-distribution gen-
eralization. In Advances in Neural Information Processing
Systems.
Li, H.; Zhang, Z.; Wang, X.; and Zhu, W. 2023. Invari-
ant Node Representation Learning under Distribution Shifts
with Multiple Latent Environments. ACM Transactions on
Information Systems.
Nunes, M.; and Pappa, G. L. 2020. Neural architecture
search in graph neural networks. In Intelligent Systems: 9th
Brazilian Conference, BRACIS 2020, Rio Grande, Brazil,
October 20–23, 2020, Proceedings, Part I 9. Springer.
Pagliardini, M.; Jaggi, M.; Fleuret, F.; and Karimireddy, S. P.
2022. Agree to disagree: Diversity through disagreement for
better transferability. arXiv preprint arXiv:2202.04414.
Peng, N.; Poon, H.; Quirk, C.; Toutanova, K.; and Yih, W.-t.
2017. Cross-sentence n-ary relation extraction with graph
lstms. Transactions of the Association for Computational
Linguistics.

Peng, X.; Wei, Y.; Deng, A.; Wang, D.; and Hu, D. 2022.
Balanced multimodal learning via on-the-fly gradient mod-
ulation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.
Qin, Y.; Wang, X.; Zhang, Z.; Xie, P.; and Zhu, W. 2022a.
Graph neural architecture search under distribution shifts. In
International Conference on Machine Learning. PMLR.
Qin, Y.; Zhang, Z.; Wang, X.; Zhang, Z.; and Zhu, W. 2022b.
NAS-Bench-Graph: Benchmarking graph neural architec-
ture search. Advances in Neural Information Processing
Systems.
Rame, A.; Kirchmeyer, M.; Rahier, T.; Rakotomamonjy, A.;
Gallinari, P.; and Cord, M. 2022. Diverse weight averag-
ing for out-of-distribution generalization. arXiv preprint
arXiv:2205.09739.
Shen, Z.; Cui, P.; Zhang, T.; and Kunag, K. 2020. Stable
learning via sample reweighting. In Proceedings of the AAAI
Conference on Artificial Intelligence.
Shi, M.; Tang, Y.; Zhu, X.; Huang, Y.; Wilson, D.; Zhuang,
Y.; and Liu, J. 2022. Genetic-GNN: Evolutionary architec-
ture search for graph neural networks. Knowledge-Based
Systems.
Sun, T.; Wang, W.; Jing, L.; Cui, Y.; Song, X.; and Nie, L.
2022. Counterfactual reasoning for out-of-distribution mul-
timodal sentiment analysis. In Proceedings of the 30th ACM
International Conference on Multimedia.
Tao, Z.; Wei, Y.; Wang, X.; He, X.; Huang, X.; and Chua,
T.-S. 2020. Mgat: Multimodal graph attention network for
recommendation. Information Processing & Management.
Teney, D.; Abbasnejad, E.; Lucey, S.; and Van den Hengel,
A. 2022. Evading the simplicity bias: Training a diverse
set of models discovers solutions with superior ood gener-
alization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.
Wang, T.; Sridhar, R.; Yang, D.; and Wang, X. 2021a. Iden-
tifying and mitigating spurious correlations for improving
robustness in nlp models. arXiv preprint arXiv:2110.07736.
Wang, T.; Zhou, C.; Sun, Q.; and Zhang, H. 2021b.
Causal Attention for Unbiased Visual Recognition. CoRR,
abs/2108.08782.
Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic graph cnn for learning
on point clouds. Acm Transactions On Graphics (tog).
Wang, Y.; Wang, W.; Liang, Y.; Cai, Y.; and Hooi, B. 2021c.
Mixup for node and graph classification. In Proceedings of
the Web Conference 2021.
Wen, H.; Ding, J.; Jin, W.; Wang, Y.; Xie, Y.; and Tang, J.
2022. Graph neural networks for multimodal single-cell data
integration. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.

2020. Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstra-
tions, 38–45.
Wu, Q.; Zhang, H.; Yan, J.; and Wipf, D. 2022a. Han-
dling distribution shifts on graphs: An invariance perspec-
tive. arXiv preprint arXiv:2202.02466.
Wu, Y.-X.; Wang, X.; Zhang, A.; He, X.; and Chua, T.-S.
2022b. Discovering invariant rationales for graph neural net-
works. arXiv preprint arXiv:2201.12872.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Yang, L.; Zhang, S.; Qin, L.; Li, Y.; Wang, Y.; Liu, H.;
Wang, J.; Xie, X.; and Zhang, Y. 2022. GLUE-X: Evaluat-
ing Natural Language Understanding Models from an Out-
of-distribution Generalization Perspective. arXiv preprint
arXiv:2211.08073.
Zhang, C.; Zhang, M.; Zhang, S.; Jin, D.; Zhou, Q.; Cai, Z.;
Zhao, H.; Liu, X.; and Liu, Z. 2022a. Delving deep into
the generalization of vision transformers under distribution
shifts. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.
Zhang, X.; Cui, P.; Xu, R.; Zhou, L.; He, Y.; and Shen, Z.
2021. Deep stable learning for out-of-distribution gener-
alization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.
Zhang, Z.; Wang, X.; Guan, C.; Zhang, Z.; Li, H.; and Zhu,
W. 2022b. Autogt: Automated graph transformer architec-
ture search. In The Eleventh International Conference on
Learning Representations.
Zhang, Z.; Wang, X.; Zhang, Z.; Shen, G.; Shen, S.; and Zhu,
W. 2023. Unsupervised graph neural architecture search
with disentangled self-supervision. In Thirty-seventh Con-
ference on Neural Information Processing Systems.
Zhao, Y.; Wang, D.; Bates, D.; Mullins, R.; Jamnik, M.; and
Lio, P. 2020a. Learned low precision graph neural networks.
arXiv preprint arXiv:2009.09232.
Zhao, Y.; Wang, D.; Gao, X.; Mullins, R.; Lio, P.; and
Jamnik, M. 2020b. Probabilistic dual network architecture
search on graphs. arXiv preprint arXiv:2003.09676.
Zhou, K.; Huang, X.; Song, Q.; Chen, R.; and Hu, X. 2022.
Auto-gnn: Neural architecture search of graph neural net-
works. Frontiers in big Data.
Zhu, Q.; Ponomareva, N.; Han, J.; and Perozzi, B. 2021.
Shift-Robust GNNs: Overcoming the Limitations of Local-
ized Graph Training Data. arXiv:2108.01099.

We provide detailed information about the complexity
analysis, search space of MG-NAS and OMG-NAS in Ap-
pendix B, training procedures of OMG-NAS in Appendix C,
datasets in Appendix D, parameter settings in Appendix E
and the OMG-NAS algorithm in Algorithm 1.

A Complexity Analysis
We analyze the computational complexity of OMG-NAS
as follows. Let |V |, |E| denote the total number of nodes
and edges, d is the multimodal hidden dimension, T is
the number of evaluated architectures, C is the number
of cells and dc is the hidden dimension of LSTM. The
time complexity of OMG-NAS contains MGNN evalua-
tion O(T (|E|d+ |V |d2)), GMSWE O(T |V |) and controller
learning O(Cd2c). The overall time complexity of OMG-
NAS is O(T (|V | + |E|d + |V |d2) + Cd2c). MGNNs has
O(d2) parameters, the GMSWE has O(|V |) parameters and
the controller has O(d2c) parameters. Thus, the total number
of learnable parameters is O(d2 + d2c + |V |). In summary,
our method is on par or more computationally efficient com-
pared to existing NAS-OOD works (Qin et al. 2022a; Bai
et al. 2021) and GNNs.

B Details of Search Space
The MGNN model in our OMG-NAS consists of three com-
ponents - GNN cells, multimodal fusion cell and prediction
layer.

B.1 GNN Cells
In GNN cells, we model the information propagation and ag-
gregation under different modalities. We represent the data
from each modality as a graph Gm = (Um, Em) with edge
set Em = {⟨i, j⟩}. m ∈ M = {v, t} denote the visual and
textual modality, respectively.

The GNN cell in the l-th layer of modality m updates
node feature hu,m for each node u by aggregating its neigh-
borhoods as

a(l)
u,m = AGGREGATE(h(l−1)

v,m : v ∈ N (u)), (9)

h(l)
u,m = ACTIVATE(W (l)

m · a(l)
u,m), (10)

where AGGREGATE is the aggregation function includ-
ing attention computation and aggregation operation, ACTI-
VATE is the activation function. W (l)

m is the network weight,
h
(l−1)
v,m is the output of the last layer or the input feature for

l = 1,N is the receptive field (the set of neighboring nodes)
of the node u.

For AGGREGATE function, we firstly calculate atten-
tion coefficients e

(l)
u,v,m (also called correlation coefficients

in some papers) for each node v ∈ N (u), then we aggregate
the information from neighborhoods. Formally,

a(l)
u,m = Agg({e(l)u,v,mh(l−1)

v,m : v ∈ N (u)}), (11)
where Agg is the message computation operator that ag-
gregates information from neighborhood. Any permutation
invariant operators, such as mean, max, sum and mlp can
be used, and non-linear transformations are applied before
and/or after the aggregation to increase expressive power
(Gao et al. 2020b). We consider several attention coefficients

e
(l)
u,v,m and list several primitive operations as follows. Note

that we use σ to represent the aggregation operation for the
following formulas.
Primitive operations.

(1) GNN. The key idea of GNN is to generate node embed-
dings based on local neighborhoods. GNN firstly aver-
ages neighbors’ previous layer embeddings, then adds
the previous layer embedding of node u. After a non-
linear function we will get the l-th layer embedding of
node u:

h(l)
u = σ(W (l)

∑
v∈N (u)

h
(l−1)
v

|N (u)| +B(l)h(l−1)
u). (12)

(2) GCN. GCN is one type of GNN based on the neighbor-
hood aggregation idea (Kipf and Welling 2016). Instead
of simple averaging, GCN calculates various normal-
ization coefficients across neighbors and uses the same
transformation matrix for node u and neighbor embed-
dings.

h(l)
u = σ(W (l)

∑
v∈N (u)∪u

h
(l−1)
v√

|N (u)||N (v)|
) (13)

(3) GAT. For GAT(Veličković et al. 2017) , the attention co-
efficients are computed on the pair-wise attention

h(l)
u = σ(W (l)

∑
v∈N (u)

αuvh
(l−1)
v), (14)

where the neighbor nodes of the central node are nor-
malized using softmax function

αuv =
exp(euv)∑

k∈N (u) exp(euk)
. (15)

GAT also uses a one-layer feed-forward neural network
to calculate the importance of neighbor nodes to central
nodes:

euv = LeakyReLU(Wah
(l−1)
u +Wbh

(l−1)
v). (16)

(4) MGAT. Existing methods fail to learn the propagation
patterns of multimodal graphs from a multimodal per-
spective. To this end, according to Tao et al. (Tao et al.
2020), we introduce the gated attention mechanism into
information transmission:

h(l)
u,m = σ(

∑
v∈N

fa(u, v)fg(u, v)W
(l)hv,m), (17)

where fa(u, v) and fg(u, v) represent the attention part
and the gate part of the gated attention network respec-
tively. The former represents the contribution of node v
to node u, and the latter determines whether informa-
tion is propagated from node v to node u. We use inner
product gate to represent the close relationship between
node u and v:

fg(u, v) = σ(
hT
u,mhv,m√

du
), (18)

where du is the out degree of node u.

Primitive operations for visual graph convolution.

(1) Max-Relative GraphConv (Li et al. 2019a) (Mr). This
method reduces the limitations of GCNs in process-
ing non-Euclidean distance data and significantly im-

Algorithm 1: OMG-NAS: Out-of-distribution Generalized Multimodal Graph Neural Architecture Search

Input: Multimodal graph dataset D(tr),D(val)

Output: Optimal MGNN model (A∗,W ∗), optimal global weights ω∗;
1 for t← 1 to T do
2 while not converge do
3 Controller samples architectures set A from search space;
4 for A in A do
5 ω ← Init with(ω∗);
6 for e← 1 to Epoch do
7 for sampled minibatch do
8 for e’← 1 to Epoch Reweight do
9 Optimize the weights by minimizing Equation 4;

10 end
11 Back propagate with weighted prediction loss Equation 6;
12 Modulate gradient as Equation 39 and Equation 40;
13 Save features and weights;
14 end
15 end
16 Update ω∗ as Equation 7;
17 end
18 Train controller;
19 end
20 W ∗, ω∗ ← Train MGNN with architecture A∗ and global weights ω∗;
21 end

proves performance in point cloud semantic segmenta-
tion tasks. To construct a network that allows GCN to
stack deeper layers without suffering from gradient van-
ishing, three deep GCN algorithms have been proposed:
residual/dense connections, and dilated convolutions.

h(l)
u = σ(W (l)[h(l−1)

u ,max({hv − hu|v ∈ N})]) (19)

(2) EdgeConv(Wang et al. 2019) (Edge). EdgeConv applies
a channel-wise operation on the edge features associated
with all the edges emanating from each vertex. The fol-
lowing is an asymmetric edge function which explicitly
combines global shape structure, captured by the coor-
dinates of the patch centers with local neighborhood in-
formation:

h(l)
u = σ(Θ(l)[h(l−1)

u , hv − hu]|v ∈ N (u)]), (20)

where Θ = (θ1, · · · , θM) encodes the weights of M dif-
ferent filters.

(3) GraphSAGE (Sage). Hamilton et al.(Hamilton, Ying,
and Leskovec 2017) propose a general inductive learn-
ing framework called GraphSAGE, which does not di-
rectly learn node embedding vectors as previous GNNs
did, but instead learns functions for sampling and ag-
gregating from neighboring nodes, results in the ability
of inductive learning. We concatenate self-embeddings
with neighbor embeddings, and adopt the maximum op-
eration as the general aggregator.

h(l)
u =σ([W (l)max(h(l−1)

v |v∈N (u)),Bkh
(l−1)
u]) (21)

(4) GIN. Xu et al.(Xu et al. 2018) prove the strict upper
limit of the expressive power of GNN variants that per-
form neighborhood aggregation (also known as message

passing), and design the most powerful GNN named
GIN under this framework:

h(l)
u =σ(MLP(l)((1+ϵ(l))h(l−1)

u +
∑

v∈N (u)

h(l−1)
v)). (22)

B.2 Multimodal Fusion Cells
While GNN cells learn the graph propagation mode of a
single mode, multimodal fusion cells learn how different
modalities interact with each other and lead to better mul-
timodal GNN models. Consequently, the integration of mul-
timodal fusion cells can enhance the performance of MGNN
models. In each such fusion layer, two inputs are combined,
namely, the output from single modal GNN cells for modal-
ity m1, and the output from single modal GNN cells for
modality m2:

h
(l)
f = FUSION(hm1 , hm2). (23)

Primitive operations. All the primitive FUSION operations
take two tensor inputs hm1

, hm2
, and outputs a tensor h̃f .

(1) Cross-attention. A modality may contain uninforma-
tive or even misleading information, resulting in nega-
tive messaging. Cross-attention (Abavisani et al. 2020)
can filter the uninformative and misleading components
from a weak modality. Firstly, we use a full connection
layer to project the single-mode m feature:

h′
mi

= FC(Wmihmi + bmi). (24)
Secondly, we calculate an attention mask αmi

that com-
pletely dependent on single modality:

αm1 = σ(WT
m1

[h′
m1
|h′

m2
] + bm1), (25)

αm2 = σ(WT
m2

[h′
m1
|h′

m2
] + bm2). (26)

We then obtain the weighted feature representations:

h̃m1 =
∑

αm1h
′
m1

, h̃m2 =
∑

αm2h
′
m2

. (27)

Finally, we concatenate h̃m1 and h̃m2 :

FUSION(hm1 , hm2) = [h̃m1 |h̃m2]. (28)

(2) Co-attention. Different from cross-attention, co-
attention jointly performs visual attention and image
attention to model visual and textual information
simultaneously. The attention mask is calculated as
follows:

αm1 = σ(WT
m1

hm1 + bm1), (29)

αm2 = σ(WT
m2

hm2 + bm2). (30)

The rest of the operation steps are similar to cross-
attention.

B.3 High Order Spread
We stack additional layers for information propagation in
order to leverage higher-order connectivity between nodes
and further enhance the representation. Through GNN cells,
we get single modality information of each node:

h(l)
u,mi

= GNNCell(h(l−1)
u,mi

). (31)
Through fusion cell, we get multimodal fusion information
of each node:

f (l)
u = FusionCell(h(l−1)

m1
, h(l−1)

m2
). (32)

These steps enable us to enrich the representation of node
information by leveraging both within-modality and cross-
modality connectivity between nodes in the graph.

B.4 Prediction Layer
After updating the representations of nodes in a particular
modality m, we combine the representations of different
modality into a new representation. This process can be ex-
pressed mathematically as follows:

hu = h(L)
u,v ||h

(L)
u,t ||h

(L)
f . (33)

For node classification task, we let the concatenation of
the output of the final GNN layers h

(L)
u,v , h

(L)
u,t and fusion

layer h(L)
f to be the input of the classification layer, and use

a two-layer MLP to predict the label of each node u:
ŷu = softmax(tanh(W2(tanh(W1hu + b1)) + b2), (34)

where W1,W2 are the trainable weight matrices and b1, b2
are the bias vectors. The softmax function is applied to ob-
tain the final prediction score ŷu.

For graph classification task, we use a pooling layer such
as max pooling and average pooling before the classification
layer to aggregate the node information in the last layers and
get the representation of the graph G:

hG = POOL({h(L)
j : j ∈ UG}), (35)

ŷG = softmax(tanh(W2(tanh(W1hG + b1)) + b2). (36)

C Details of Training OMG-NAS

C.1 For Each Batch of Graph Classification
Tasks.

In Section 3.3 we propose a global sample weight estima-
tor across architectures. However, the weight learning pro-
cess for graph classification tasks processes another chal-
lenge that in SGD optimization, only a batch of samples can
be accessed at a time. To address this issue, we adopt the
global-local graph weight estimator introduced in (Zhang
et al. 2021; Li et al. 2022a). Let the uni-modal represen-
tation and the weights of batch L to be Zm

L and wm
L . After

we sample an architecture, the global information (Zm, wm)
are initialized. Given the global information (Zm, wm), we
learn the weight of batch L while concatenating the global
and local information:

Zm
O = [Zm∥Zm

L], wm
O = [wm∥wm

L]. (37)

After that, we fuse the global uni-modal information and
local uni-modal information by:

Zm
L ← αiZ

m + (1− αi)Z
m
L ,

wm
L ← αiw

m + (1− αi)w
m
L ,

(38)

where αi is a hyper-parameter that controls the weight of
long-term global information in the training process. By uti-
lizing this parameter, the global weights can be gradually
updated, ensuring the consistency of the entire graph dataset.

C.2 Details of OGM-GE in Section 3.2

When one of the modalities displays a higher likelihood of
being influenced by spurious features, MGNN tends to learn
the spurious features of this modality over the other modal-
ity. To ensure fully learn from the two GNN encoders of
MGNN, we want to balance the learning of the two modal-
ities to prevent over-reliance on the spurious feature of a
single modality. Consequently, balanced multimodal graph
stable learning enables the fully learned embedding of all
modalities, which facilitates the decorrelation of multimodal
features.

Similar with Peng et al. (Peng et al. 2022), we design the
discrepancy ratio ρt and ρv for textual and visual modality,
which monitor the contribution discrepancy between textual
and visual modalities.

ρt=

∑
x(1yi=0 ·softmax(f t(x))0+1yi=1 ·softmax(f t(x))1)∑
x(1yi=0 ·softmax(fv(x))0+1yi=1 ·softmax(fv(x))1)

ρv=
1

ρt

(39)
where softmax(f t(x))k = softmax(W t · ϕt(θt, ut) + bt)k
represent the prediction probability made by MGNN that x
belongs to label k(k = 0, 1) under textual modality. Denom-
inator of ρt is the approximated prediction of modality t to
estimate uni-modal performance of MGNN and the numer-
ator is that of modality v.

We integrate the coefficient ρt and ρv into widely used
SGD optimization method, and θt, θv in iteration i is up-

Action Operator Value

Agg sum
∑

j∈Nu
hu

mean 1/|Nu|
∑

j∈Nu
hu

max maxj∈Nu
hu

mlp MLP((1 + ϵ)hu +
∑

v∈N(u) hv)
Act / tanh, relu, identity, softplus, leaky relu, relu6, elu
Att const econuv = 1

gcn egcnuv = 1/
√
dudv

gat egatuv = LeakyReLU(Wl ∗ hu +Wr ∗ hv)
sym-gat esgatuv = egatuv + egatvu

mgat emgat
uv = egatuv ∗ σ(hu ∗ hv/

√
dudv)

cos ecosuv = ⟨Wl ∗ hu,Wr ∗ hu⟩
linear elinuv = tanh(sum(Wr ∗ hv))

VisualConv max-relative W (l)[h
(l−1)
u ,max({hv − hu|v ∈ N})]

edgeconv Θ(l)[h
(l−1)
u , hv − hu]|v ∈ N]

graphsage [W (l)max(h
(l−1)
v |v ∈ N), Bkh

(l−1)
u]

gin MLP(l)((1 + ϵ(l))h
(l−1)
u +

∑
v∈N h

(l−1)
v)

Table 6: Operators of search spaceMGNN

Operator Value

cross-attention Equation (29-33)
co-attention Equation (34-35)

linearglu xW1 ⊙ Sigmoid(yW2)
concatfc ReLU(Concat(x, y)W + b)

sum Sum(x, y) = x+ y

Table 7: Operators of search spaceMFusion. x and y repre-
sent input from different modalities, respectively.

dated as follows:{
θti+1=θti−(1−1ρt>1 · thah(α·ρt)) · η∇θtL(θ

t
i)

θvi+1=θvi −(1−1ρv>1 · thah(α·ρv)) · η∇θvL(θ
v
i)

(40)

where α is a hyper-parameter to control the degree of mod-
ulation, η is the learning rate, ∇θtL(θti) is the gradient of
modality t. By introducing ρt, ρv the optimization of modal-
ity with better performance on validation dataset is miti-
gated, while the other modality is not affected.

D Details of Dataset
After investigating existing multimodal graph datasets, we
construct our own multimodal graph dataset under OOD
settings leveraging existing datasets because there was no
multimodal graph dataset specifically designed for OOD set-
tings. In this section we will introduce the details of Tencent
dataset, Amazon review dataset and Recipe dataset, includ-
ing the dataset statistic in Table 8, Table 9 and Table 10.

Tencent dataset contains articles from two different do-
mains which allow us to analyze the multimodal graph OOD
ability. 1) Junk domain includes articles of poor quality and
false contents, often with malicious intent or for promo-
tional purposes. 2) Vulgar domain contains sexual activities,
explicit sexual descriptions and images. 3) These two do-
mains have different point densities and transmission mode
as shown in Table 8.

Domain Nodes Edges Avg. Edges

Multi-OOD
Junk 2979 188332 63.22

Vulgar 604 5094 8.43
Total 3583 - -

Table 8: Statistics of the Tencent article dataset.

Domain Nodes Edges Avg. Edges

Multi-OOD

Dress 1240 13392 10.8
Trousers 787 5908 8.6

Shoes 790 7176 10.4
Baby 680 4964 7.3
Total 3497 - -

Single-OOD

Dress-Black 369 2731 7.4
Dress-Red 331 1854 5.6
Dress-Blue 318 1018 3.2

Total 1018 - -

Table 9: Statistics of the Amazon Review dataset.

Domain Graphs Avg. Words

Multi-OOD

Chocolate Beverage 89 38.7
Yogurt 53 35.3
Drink 235 29.9
Coffee 121 32.4

Chocolate Cake 241 41.3
White Cake 153 43.9
Fruit Cake 149 46

Others 46 34.2
Total 1087 -

Single-OOD

Cake-Brown 238 41.2
Cake-White 161 43.7

Beverage-Brown 207 34.5
Beverage-White 204 34.1

Total 810 -

Table 10: Statistics of the Recipe dataset.

E Details of Parameter Settings
Hyper-parameters of the controller. We use a one-layer
LSTM with 100 hidden units trained with the ADAM op-

timizer and a learning rate of 0.00035. After OMG-NAS
searches S=50 architectures, we collect the best architecture
and best global weights that achieve the best validation ac-
curacy.

Hyper-parameters of MGNNs. After the controller has
sampled an architecture, a child MGNN model will be built
and trained for certain epochs. For Recipe dataset, the num-
ber of epochs is set to be 50, and the batch size is selected
from {8,16,64}. The learning rate is chosen from {0.001,
0.005, 0.01}. The dimension of the representations and hid-
den layers are 200 for text modality and 128 for visual
modality. For Amazon dataset, the number of epochs is set
to be 100. The learning rate is chosen from {0.001, 0.005,
0.01}. The dimension of the representations and hidden lay-
ers are 128 for both text modality and visual modality. For
Tencent dataset, the number of epochs is set to be 200. The
learning rate is 0.001. The dimension of the representations
and hidden layers are 768 for both text modality and visual
modality.

Hyper-parameters for global weight learning. In the
training phase, OMG-NAS learns a set of sample weights
for each MGNN architecture. The parameters of the con-
troller and the sample weights are optimized iteratively. To
optimize the global weights, we set the number of epochs of
learning sample weights to be 30. The learning rate is set to
be 0.01 for Amazon rewiew dataset under Multi-OOD set-
tings and 0.001 for other settings.

